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The thermal expansion of structures with frameworks of linked octahedra may be broken up into two 
parts: the changes in shape and size of individual octahedra, and their changes of tilt relative to one 
another. ExI:ansion due to the second cause, when allowed by symmetry, is generally much greater 
than expansion of the ectahedron itself, which is always small and may even be negative. Typical 
values of the average macroscopic expansion are 16 x 10 .6 deg-1 in NaNbO3 where change of tilt can 
occur, 4 x 10-6 in KNbO3, where it cannot. At a first approximation, the octahedron may be treated 
as regular at all temperatures. At a second approximation, differences of shape can be associated with 
off-centre displacement of the Nb atom, of such a kind that the O-O edges associated with a 'relaxed' 
O-Nb-O link are on the average longer (typically by about 0.02 A) than the other O-O edges. This 
extension e is independent of the tilt of the octahedron, its exact symmetry, the nature of the second 
cation, or the existence of ferroelectricity rather than antiferroelectricity, but is directly proportional 
to the Nb displacement. This empirical rule applies to all octahedral niobates examined (including 
LiNbO3), and when symmetry allows deduction of e from lattice parameters it can be used to predict 
the value of the Nb displacement, and does so correctly for KNbO3 (the only symmetrical structure 
about which sufficient information is available). A general consequence of the rule is that O-O edges 
parallel to a temperature-dependent Nb displacement (or having a component parallel to it) will tend 
to contract as the temperature rises. Geometrical relations are developed allowing easy calculation of 
O-O edge lengths and their thermal changes, both individual and mean values, from macroscopically 
measured data, for structures of different symmetries. 

1. Introduction 

1.1. Outline of problem 
Comparative studies of thermal expansion would be 

easier and more informative if it were possible to 
break up the macroscopic observed effects into parts 
associated with features which recur from one struc- 
ture to another, though in different combinations and 
with different environments. For structures which can 
be described in terms of Goldschmidt coordination 
polyhedra, the obvious analysis is in terms of these 
polyhedra, irrespective of the degree of covalent char- 
acter in the interatomic bonds. (The terms 'cation' and 
'anion' will be used in this paper without any impli- 
cations about this.) We shall be concerned with struc- 
tures of niobates in which NbO6 octahedra share cor- 
ners to form a three-dimensional framework. The 
macroscopic lattice parameters are dependent directly 
only on the size and shape of the octahedra and on 
their tilts relative to one another. Similarly, the thermal 
expansion can be expressed as a function of the changes 
in shape and size of the octahedra, and the changes 
of their tilts. This analysis prepares the ground for an 
attempted explanation. 

The structures considered are potassium niobate 
KNbO3, sodium niobate NaNbO3 and lithium niobate 
LiNbO3. The three materials have in common a frame- 
work built from nearly regular NbO6 octahedra with 
each corner shared between two octahedra, the A ca- 
tions (K, Na, or Li) occupying interstices of the frame- 

work. In the idealized forms, which we may take as 
the zero order approximation, all octahedra are per- 
fectly regular and parallel or antiparallel to one another. 
The important difference between the idealized form of 
the framework in KNbO3 and NaNbO3 (perovskite type) 
on the one hand, and LiNbO3 on the other, is that in 
ideal perovskite all the symmetry axes of the octa- 
hedron are retained as symmetry axes of the resulting 
cubic structure, whereas in LiNbO3 (ideally based on 
hexagonal close packing) only one triad axis and the 
three diads at right angles to it are retained; in the 
former, the two Nb-O bonds meeting at a corner are 
collinear, whereas in the latter their horizontal com- 
ponents are at 120 °. The NbO3 framework of idealized 
LiNbO3 could be derived from that of idealized KNbO3 
by allowing all octahedra to rotate 30 ° in alternate 
senses about the triad axis (Fig. 1). As they do so, the 
12-coordinated interstice originally occupied by K is 
broken up into two 6-coordinated interstices, either of 
which can hold Li. (It is not implied, of course, that 
this derivation represents a physically possible sequence 
of structures).* 

Departures of the framework from the ideal involve 
tilts (or rotations) of the octahedra relative to one 
another as well as distortions of the octahedra. It is 
conceivable that both distortions and tilt magnitudes 
might differ from one octahedron to another, but such 

* For a more detailed discussion of the structural relation- 
ship, see Megaw (1968b). 
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further complexities do not occur in any of our actual 
examples. 

The individual geometries of the various structures 
will be summarized later, in § 2. 

Experimental data are taken mainly from the fol- 
lowing papers: 

NaNbO3: lattice parameters, Lefkovitz, Lukasze- 
wicz & Megaw (1966); structural data, Sakowski- 
Cowley, Lukaszewicz & Megaw (1968), superseding 
preliminary note by Wells & Megaw (1961). 

Na0.975K0.025NbO3 ('Phase II'): lattice parameters 
and structural data, Wells & Megaw (1961); and Wells 
(1960). 

KNbO3: lattice parameters, Shirane, Newnham & 
Pepinsky (1954); structural data, Katz & Megaw 
(1967). 

LiNbO3: lattice parameters and structural data at 
room temperature, Abrahams, Reddy & Bernstein 
(1966); at high temperatures, Abrahams, Levinstein & 
Reddy (1966). 

1.2. Theoretical approach 
To simplify the problem, we proceed by successive 

approximations. 
As a first approximation, we assume that the octa- 

hedra are all regular. In general they are freely hinged 
at the corners so that they can tilt relative to one 
another, but special cases are possible in which they 
are so placed relative to the symmetry of the structure 
that tilts are restricted to rotation about one axis or 
prohibited altogether. In practice, we shall have more 
examples of symmetry-clamped octahedra than of 
freely hinged octahedra. 

The macroscopic expansion is the sum of the effects 
due to changes of tilt and changes of octahedron size. 
On general grounds we expect the changes of size 
(measured either by the octahedron edge length lm or 
the Nb-O bond length) to be fairly small, and changes 

of tilt (within a given phase) to be moderately large 
and in the direction which will increase the specific 
volume with increasing temperature. 

At the second approximation we must consider 
changes in shape of the octahedron. A theory of this 
has been put forward (Megaw, 1968a) which associates 
the character and magnitude of the distortion with the 
direction and magnitude of the off-centre displacement 
of Nb. If there are no external faces on the octahedron, 
the predicted displacements are as follows: 

one-corner displacement - tetragonal bipyramid 
elongated parallel to direction of displacement; 

two-corner displacement - tetragonal bipyramid 
compressed perpendicular to plane of displacement, 
accompanied by an isotropic expansion; 

three-corner displacement - no change of shape, but 
larger isotropic expansion. 

Both Nb displacement and distortion of the octa- 
hedron are associated with relaxation of stress in one 
or more O-Nb-O diameters of the octahedron, which 
are under tension either from the octahedron itself 
(intrinsic effect) or from isotropic external forces; and 
the sequence of types in the above list is the order of 
increased tension. 

The elongated edges are thus to be considered as 
relaxed, the shorter edges as unrelaxed. The difference 
between the long and short edges is called the relaxa- 
tion extension, denoted by e. Thus the theory predicts 
an increase of e with increasing Nb displacement, 
whatever its direction. This is a simple rule which can 
easily be tested. 

At the third approximation we consider the effect 
of non-isotropic external stresses on the octahedron. 
They will of course have an effect on the magnitude 
and perhaps the direction of the Nb displacement, and 
will affect different edges differently. However, we pre- 
dict that the relationship already established between 
e and the Nb displacement will hold good (or be very 

I o I 
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Fig. 1. Projection down triad axis of two octahedra sharing a corner at height 1. Heights in arbitrary units. Nb-O bonds to 
common O are shown dotted. (a) Part of LiNbO3 framework. (Atom at height zero coming vertically below atom at height 2 
has been omitted, and the edge formed by it is left unfinished.) (b) Part of perovskite framework. 
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little altered) provided e is defined as the difference 
between the mean lengths of the relaxed and unrelaxed 
edges, the classification of edges as relaxed or un- 
relaxed being made in the same way as at the second 
approximation. This averaging procedure, initially 
adopted quite empirically, will be given some theoret- 
ical justification in § 1.3. 

There will, as we have said, in general be a scatter 
of edge lengths within the relaxed and unrelaxed groups. 
In particular, we consider the effect of the symmetry 
of the structure on the relaxed edges. The external forces 
must have the symmetry of the structure, which (except 
in the perovskite aristotype) is less than the symmetry 
of the octahedron; hence they do not necessarily affect 
all relaxed edges equally. We describe the distortion in 
terms of a symmetry-clamping parameter s, the dif- 
ference between the mean lengths of the relaxed edges 
most nearly perpendicular to the direction of the Nb 
displacement and those most nearly parallel to it. This 
definition allows us to give a numerical value to s even 
when the octahedron is not symmetrically situated in 
the structure, though we then expect it to be small. 

Neither the symmetry-clamping difference nor other 
systematic differences within the relaxed or unrelaxed 
groups (whether or not their cause can be explained) 
affect the validity of the relations derived for e, the 
difference of mean lengths of the two groups. 

1.3. The role of  polarization 
The qualitative statement of the theory is in terms 

of interatomic forces which are assumed to be central, 
so that we can deal with stresses in interatomic bonds 
as compressions or tensions in links between point 
atoms. A misfit in effective atomic size between Nb 
and O, in conjunction with the non-linear elasticity of 
the bonds, is the cause of off-centre displacement. 

Actually, of course, interatomic forces are not cen- 
tral (unless purely ionic, which is an idealized extreme 
rarely encountered). The electron clouds round O are 
not spherical, but change shape according to the ap- 
proach of neighbouring atoms. When, as a result of 
off-centring, Nb approaches one O more closely, such 
changes of polarization obviously occur, and would 
need to be allowed for in a quantitative theory. Qual- 
itatively, however, so far as the isolated octahedron is 
concerned, they merely enhance the effects already dis- 
cussed in terms of central forces. 

It is when we turn to consider the linkage between 
octahedra, and the effects of structural stresses external 
to the octahedra, that we need to think about polariza- 
tion. Without attempting calculation, we may note one 
fundamental point: that if electron density is concen- 
trated into certain directions to strengthen some bonds, 
other directions must be impoverished. Put crudely, 
this might be called a law of conservation of bond 
strength, obviously analogous to Pauling's law of elec- 
trostatic valence; it will however not only affect the 
cation-oxygen bonds but also the non-bonding O-O 
contacts. Contact distances as well as bond strengths 

must depend on the electron distribution. Illustrations 
of the consequences of this effect are as follows. 

(i) No O atom can form more than one strong 
(short) Nb-O bond, and if it does so its second Nb-O 
bond is weak (and long). Hence there are lines of 
alternating short and long Nb-O bonds, and the direc- 
tion of one Nb displacement determines that of its 
neighbour along the line. 

(ii) Where an O atom forms two intermediate bonds, 
there will be a tendency to make the bond angle less 
than 180 °. This effect is not important for the purposes 
of the present paper. 

(iii) Where external forces act on an O-O edge to 
shorten (or lengthen) it, another edge sharing an O 
atom with it will be lengthened (or shortened) so that 
the mean remains nearly constant. 

(iv) Where there is a more irregular distribution of 
external forces, changes in polarization tend to neu- 
tralize the irregularity, allowing edge lengths to remain 
more nearly equal. 

Hence the recognition of polarization supplements 
the treatment in terms of central forces in two impor- 
tant aspects. It shows how the Nb displacement in one 
octahedron helps to determine that in the next; and it 
provides a justification for the assumption in § 1.2 that 
differences in the mean lengths of relaxed and un- 
relaxed edges are physically significant even when there 
is considerable scatter of individual lengths within each 
group, whether random or due to symmetry-clamp- 
ing. 

1.4. Application to thermal expansion 

Though the exact form of the relationship between 
e and the Nb displacement is not given by the theory, 
it is a reasonable empirical hypothesis to assume pro- 
portionality between them. We go further and suggest 
that, to a working approximation, the constant of  pro- 
portionality will be the same for all structures at all 
temperatures. 

The theory does not attempt, at this stage, to explain 
the absolute magnitude of the Nb displacement or the 
nature of its variation with temperature. Discussion 
of these points will be left to a later paper. On general 
grounds, we expect that within a given phase the dis- 
placement will decrease with increasing temperature, 
and experimental evidence for this in one case will be 
given in § 5.1. 

Using our two general postulates - (a) that increase 
of temperature causes decrease of Nb displacement, 
(b) that, independently, it also causes increase of spe- 
cific volume - we can now proceed to predict or ex- 
plain the thermal expansion of all phases whose struc- 
ture is known. 

We can also foresee the possibility of displacive 
transitions as resulting from a discontinuous change 
in the system of bond stresses at the end of a long 
continuous change, but we cannot make predictions 
except in terms of the detailed geometry of particular 
cases, and none will be attempted in this paper. 
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1.5. Empirical treatment 
The distortion parameters e and s, like the mean 

edge length and the tilts, are defined geometrically in 
terms of the observed structure, and are therefore in 
one sense independent of the theory - though without 
the theory we might not have recognized them as being 
of any interest. We wish to relate them to the macro- 
scopic lattice parameters. 

Geometrical relationships in pseudosymmetric struc- 
tures are all more simply described if structural par- 
ameters are expressed in terms of small deviations from 
the ideal. For the macroscopic parameters we choose 
one axial length and the difference from unity of not 
more than two axial ratios. For the octahedron we 
accept the choice made above, using lm, e/lra, and s/lm. 
The tilt angles, which are fairly small, are represented 
by the difference of their cosines from unity. 

All parameters but the axial length and Ira are first- 
order small quantities. Equations connecting the 
macroscopic and the structural parameters can then 
be rearranged in any convenient way by neglecting 
second-order small quantities. Since few* of the first- 
order quantities are greater than 10 -2 , the resulting 
relative errors will not generally be greater than 10 -4 , 
which is better than the accuracy of most of the ex- 
perimentally-measured differences. This mathematical 
approximation is assumed throughout, whatever the 
stage of our physical approximations. 

The geometrical formulae derived in what follows 
are thus independent of any theoretical assumption, 
but rely on the empirical assumption that differences 
between individual bond lengths are not so large as 
to upset any conclusions we have drawn about their 
means. 

2. Geometrical relations 

We proceed to set up equations for the lattice param- 
eters in terms of the distortion parameters and tilts of 
the octahedron and the mean edge length. This must 
be done separately for each structure of different sym- 
metry. 

2.1. Sodium niobate (phase P) 
The structure is orthorhombic, with space group 

Pbma and 8 formula-units per cell. Thus the octahedron 
is the asymmetric unit. The Nb displacement is two- 
corner, of magnitude 0.16 A; it lies nearly but not 
exactly along [100] and its relaxed square is nearly in 
(010). [Fig. 2(a)]. 

We express the macroscopic parameters in terms of 
a, e, and r/, defined as follows in terms of the pseudo- 
cubic subcell parameters av, by, r, and the ortho- 
rhombic parameters a0, b0, c0 

* In LiNbO3, some of the distortion parameters are of the 
order of magnitude of 10-1 ; but as their changes over the whole 
temperature range are about _". tenth of this the argument still 
holds good. 

a =  a~ } 
= b~/a~ - 1 (1) 

e=B-=/2  

a0 = l/2a(1 + ½e) ] 
c0 = ]/2a(1-½e) J (2) 
b0 = 4a(1 + r/) 

ao/co= tan fl/2= 1 + e (3) 

Volume = a3(1 + r/). (4) 

The tilt of the octahedron is most conveniently de- 
scribed by using orthogonal axes X ' Y ' Z '  parallel and 
perpendicular to the edges of the square of oxygen 
atoms in which the Nb displacement occurs; these make 
small angles 09, re, g, as shown in Fig. 3, with the prin- 
cipal planes defined by symmetry axes X Y Z  of the 
structure. Different octahedra have tilt angles of the 
same magnitudes but different signs. Neglecting high- 
order small quantities, we can write 

cos X X ' =  cos o9 cos ~ ] 
cos Y Y ' =  cos ~0 cos ~' / (5) 
cos Z Z ' =  cos o9 cos ~ .  

Since, however, the a-glide plane requires the X'  edge 
of the square to lie in the (010) plane, ~, is zero. 

We expect the octahedron to be a tetragonal bi- 
pyramid with four relaxed edges lr in (010) and eight 
unrelaxed edges lu inclined to it. Its height h is given by 

h2=412u-21~ . (6) 

Using (5), we have 

ao = 21r cos 09 / 
b0 = 4h cos ~0 / (7) 
Co = 2l~ cos 09 cos ~0. 

Hence 

ao/co = see ~0, 

whence, from (3) 

~02=2e. (9) 

Then from (2) and (7) 

a =  ]/21r(1- ½e- ½o9 2) (10) 

and from (7) and (8), and (1) 

a(1 +r/) = h  cos ~0=h(1-e) .  (11) 

We rearrange the equations to give the edge lengths 
explicitly. From (9) and (10) 

l r = - ~ a  (1+½g+½o92) = - ~ a  (1_1_¼~2+½o99. (12) 

From (6), (11) and (12), 

a (1+½v+¼~+¼o92) l . = - ~  

a 
- 1/2 (1+½,1+~-~o2+¼o9~). (13) 
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Hence  
a 

tin= ~(zr +2lu) = - ~ ( 1  +~+~+_]co2) 

a 
- ]/2 (1 +½q+½~02+½co 21 

and  

e= l r -  lu = -~22 ( - ½ r l -  ¼e + ¼co 2) 

a 
- ]/2 (-½rl-~°2+¼co2)" 

The volume is 

2 ]/2l~(1 - ~0z-co2). 

(14) 

(15) 

(16) 

O f  the  quant i t ies  on the  r igh t -hand  side, a and  r / a r e  
de te rmined  macroscopica l ly ,  and  ~0 is directly re la ted 
to the  macroscop ic  p a r a m e t e r  e. Only  co is u n k n o w n  
f r o m  macroscop ic  work ,  and  needs ei ther  to be f o u n d  
f r o m  s t ruc ture  analysis  or  es t imated  by indirect  means .  

Equa t ions  (9) and  (11) al low us to calculate  ~0 and  h 
f r o m  the macroscop ic  p a r a m e t e r s  in Table  l (a)  and  to 
compare  t h e m  wi th  the values found  by s t ruc ture  anal-  
ysis (Table 2). F o r  ~0 we have  8.6 ° and  9 o respectively,  
fo r  h 3.923 A and  3.928 A. The ag reemen t  merely  
confi rms tha t  the  app rox ima t ions  used are sat isfactory.  
We c a n n o t  find lr and  co independent ly ,  bu t  accept ing 
lr as 2.814 A f r o m  Table  2, we find co f r o m  (12) to be 
8.9 o, as c o m p a r e d  with 8½ ° f r o m  direct  s t ruc ture  anal-  
ysis. 

, X Z '  ~ . . _ ~  

i 

(a) (b) 

~ 
/3 . . . .  3 

- 1  - 1  . . . . . . .  Y 

1 

1 3 

(c) 

Fig. 2. (a) NaNbO3. Projection on (010) of oxygen atoms forming equatorial squares and the enclosed Nb atoms. Nb displace- 
ments from centres of squares and relative tilts of squares about axes perpendicular to the paper (tilt angle co) can be seen. 
The tilt ~0 takes place about XX', the orthorhombic x axis, and shortens edges such as QQ" (nearly perpendicular to the 
axis) relative to the others. (b) KNbO3. Section parallel to (010) through oxygen atoms of equatorial squares and the enclosed 
Nb atoms. Nb displacements from centres of squares can be seen. Edge lengths are marked. ZZ" is the orthorhombic z axis. 
(c) LiNbO3. Projection on (0001) of two Nb octahedra sharing a corner. Heights are in arbitrary units; Nb atoms are both 
above the centres of their octahedra. Edge lengths are marked. (All distortions - tilts and displacements - slightly exaggera- 
ted to show their effect). 
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2.2. Potassium niobate, orthorhombic phase 
T h e  space  g r o u p  is Bmm2, a n d  t h e r e  is one  f o r m u l a -  

u n i t  pe r  cel l ;  t h e  o c t a h e d r o n  is f ixed in  o r i e n t a t i o n .  
T h e  N b  d i s p l a c e m e n t ,  o f  m a g n i t u d e  0.20 A,  is two-  
c o m e r ;  i ts  d i r e c t i o n *  is [001], c o i n c i d i n g  w i t h  a d i ad  
s y m m e t r y  axis ,  a n d  i ts  r e l a x e d  s q u a r e  is in  t h e  (010) 
p l ane .  

W e  use  p s e u d o c u b i c  axes  o f  re fe rence ,  a n d  def ine  a, 
r/, a n d  e as in  (1). O c t a h e d r o n  edges  are  t h e n  as fo l lows  
[Fig.  2(b)]:  

a ( 1 - ½ e )  [ X 
112= ½(ll + 12) = ½ao = - - ~  t (17) 

a (1 +½e) ] 134=13=14=½c0 = --~ 

a 
lr =½(112+134)-  ]/2 (18) 

a (1 +½r/) (19) l , ,  = 
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* It  is unfortunate that the axis most nearly coinciding with 
the direction of the Nb displacement has been differently named 
in orthorhombic KNbO3 and NaNbO3; but it is less confusing 
to keep the original names than to attempt to change them, as 
has been done by some authors. In both cases the direction of 
Nb displacement is the longer of the two orthorhombic axes 
a o ,  Co. 

Fig. 3. Stereographic projection showing effect of octahedron 
tilts (angles of tilt somewhat exaggerated). XYZ are sym- 
metry directions of structure, X" Y'Z" tetrad axes of octa- 
hedron (assumed regular). Tilt angles co and t; are between 
Z '  and the principal planes YZ XZ respectively; ~, is between 
Y' and the principal plane YZ; angles marked a~',tp', ~u' are 
very nearly equal to 09, 0, V. 

Material 

NaNbO3 

Na0.975K0.025NbO3 

KNbO3 

T a b l e  1 (a). Lattice parameters of  perovskite-type phases 

Phase Temperature a~ e ~ Vol I/3 
(oc) (~)  (A) 

P 20 3.9148 0.0114 -0 .00900 3.903 
360 3.9210 0.0064 -0.00071 3.920 

Q 20 3"922 (~0.01) -0"0107 3.908 
260 3"925 ? -0 .0060 3"917 

R 360 3"9156 0"0024 ~ 0  3.919 
440 3"9228 0"0008 ~ 0  3-923 

Cubic 640 3-9420 - - 3"942 
800 3"9494 - - 3-949 

'Phase II '  20 3.928 0.0096 --0.0095 3.912 

[ Orthorhombic 25 4.0375 0.0044 -0 .0167 4.015 
l 205 4.0369 0.0041 -0-0133 4.019 

Tetragonal 220 3.9972 - 0.0166 4.019 
410 4.0080 - 0.0122 4.024 

Cubic 425 4.0214 - - 4.021 
510 4.0252 - - 4.025 

T a b l e  1 (b). Lattice parameters and atomic parameters of  L i N b O 3  

Temperature a c ~ u v 
(°C) (A) (A) (i) (ii) 0ii) 

24 5.1483 13.8631 -0 .0936 0.0492 0.0113 0.0113 0.0113 
200 5.1611 13.8700 -0 .0972 0.0495 0.0113 0.0095 0.0076 
400 5.1770 13.8811 -0.1013 0.0500 0.0113 0.0076 0.0038 
600 5.1955 13.8881 -0 .1068 0.0510 0.0113 0.0057 0 
800 5.2152 13.8881 -0-1136 0.0535 0.0113 0.0038 0 

1000 5.2414 13.8700 -0 .1252 0.0580 0.0113 0.0019 0 
1100 5.2626 13.8451 -0 .1348 0.0615 0.0113 0.0010 0 

Lattice parameters are from the work of Abrahams, Levinstein & Reddy, as shown in their Fig. 1, but using curves redrawn 
through their original numerical values, which were kindly supplied by Dr S. C. Abrahams. Atomic parameters u and v are 
based on the same paper, using the smoothed curve of Fig. 5 for u and the models described in the text for v. 
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a 
lm =~(lr+ 2l~) = - ~ ( 1  +~) (20) 

a 
e = l r - l u = -  l/-- ~ . ½ri (21) 

a 

s = / 3 4 - 1 1 2  - 1/2e (22) 

Volume = a3(1 + 1/) = 21/21~. (23) 

It is worth noticing the different structural origin of 
the obliquity parameter e in KNbO3 and NaNbO3. In 
NaNbO3 it was associated with a tilt of the octahedron 
about the direction of the Nb displacement; in KNbO3 
it is a consequence of the symmetry-clamping effect. 

2.3. Potassium niobate, tetragonal phase 
The space group is P4mm, and there is one formula- 

unit per cell; hence the octahedron is fixed in orien- 
tation. The Nb displacement is one-corner; its mag- 
nitude is still unknown, but its direction is [001]. 

We choose lattice parameters as follows: 

Here r/is positive. 

a = a t e t r  ] 
Ct___etr _ 1 

r / =  a t e t r  

e=O 

(24) 

The edges in (001) are lu, the others lr. Then 

a 
l~ - (25) 1/2 

a 
lr = - ~  (1 + ½r/) (26) 

a (1 + Jr/) (27) lm= ½(2lr + lu) = - ~  

a 
e = l r -  l~ = ~ - .  ½r/. (28) 

Since all relaxed edges are alike by symmetry, s=0 .  
The volume is given by the same relation, (23), as in 
the orthorhombic phase. 

Comparison of the two phases, using (21) and (28), 
shows that if e is positive, as required by the theory, 
r/is positive for the tetragonal phase, negative for the 
orthorhombic, i.e. cdat > 1, bo/ao< 1. The former con- 
dition might seem intuitively obvious on almost any 
theory, the latter is a more specific confirmation of the 
present theory. 

2.4. Lithium niobate 
The geometry of this structure, determined by Abra- 

hams and co-workers, has been discussed by Megaw 
(1968b). The space group is R3c. Referred to hexagonal 
axes, there are 6 formula-units per cell. Octahedra are 
all alike, oriented with a pair of opposite faces per- 
pendicular to the triad axis, about which they are rotated 
relative to the idealized structure by a tilt angle o9. The 

Nb displacement (of magnitude 0.26 A) is three-corner, 
along the triad axis. Edge lengths are as shown in 
Fig.2(c). 

We choose lattice parameters as follows: 

a = ahex } (29) 
rl = e2/8a 2 - 1 .  

The distortions and tilt of the octahedron are given 
by the atomic position parameters u and v, and the 
Nb off-centre displacement by w, where u,v,w are 
derived as follows from the position parameters of 
oxygen, x,y,z ,  found by Abrahams and co-workers: 

vU=y=X-~ ] (30) 
W = 1-i~2 - -  Z .  

For convenience, we write 

The tilt angle is 
u ' = u - ½ v  . (31) 

31/3 u' (32) O 9 =  - - ~ -  . 

According to theory, all the edges are relaxed, but 
we may expect a substantial symmetry-clamping effect. 
In addition the edges perpendicular to the axis,/1 and 
12, show a top-and-bottom difference like that in 
KNbO3 but much greater; we shall not be concerned 
with it at this stage, except to note its relation to the 
parameter v (which also controls the smaller difference 
between/3 and/4): 

lx-12=~v . (33) 

The edge-length means of interest are: 
a 

112=½(ll +/2)= --~- (1-{u ' )  (34) 

a (1-½u'+½r/) (35) /3,= ½(13 + 14)= -~ 
a 

lra=½(112+134)= -~-  (1 - u' +-~r/) (36) 

a 
s=/34-l lz  = ~ - ( u ' + J r / ) .  (37) 

a 3 

Volume per formula-unit = 1/~- (1 + r/) 

3 
1/2 l~(l+3u'+½r/) .  (38) 

3. Experimental evidence: 
comparison of different phases 

3.1. Edge lengths 
Experimental values of the edge lengths and their 

differences are listed in Table 2. For the cubic phases 
of NaNbO3 and KNbO3 and the tetragonal phase of 
KNbO3, they are directly calculable from the lattice 
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parameters ;  in all the other examples a detailed struc- 
ture determinat ion was needed. 

It is rather striking that  in each case where a positive 
value of e was predicted it is found, and that  its magni-  
tude is very roughly the same in all examples. More 
exactly, the smaller values of  e are associated with 
smaller values of the Nb displacement. Though the 
differences are close to the l imit  of  error, it suggests 
that  we might,  as a working approximation,  take e to 
be proport ional  to the displacement.  

Symmetry-clamping effects are shown by KNbO3 and 
LiNbO3, with values of  0.012 and 0.021 A respectively. 
The larger effect in the latter is associated with the 
larger Nb  displacement,  indicating larger external 
forces acting on the octahedron. By contrast, the value 
of  - 0 . 0 0 5  A in NaNbO3 shows that  the external forces 
are either weaker or more isotropic, or both. 

E 

40' 

30' 

20" 

10' 

, i i i , i , q, 
8* 

7* 

- 6 "  

5* 

I I I I i i T 

0 1 O0 200 300 400 *C 

Fig. 4. NaNbO3. Variation with temperature of lattice param- 
eter e and tilt ~0 (= I/2D. 

We notice also the top-and-bot tom differences be- 
tween la and 12 in KNbO3 and LiNbO3, which are 
- 0 . 0 9 2  and +0.160 A respectively [cf. Fig.2(b) and 
(c)]. The large magnitudes and the opposite signs are 
rather striking (the ' top '  edge in each case being that 
towards which Nb is displaced). A justification for re- 
garding the top-and-bot tom mean  as significant in 
spite of  these large differences was given in § 1.3, but  
discussion of  possible reasons for their occurrence will 
be left to another  paper. 

3.2. Octahedral tilts 
Though these are not directly predictable, their 

values may  be noted. For  NaNbO3 at room tempera- 
ture ~=8"6  °, co= 8.9 °. For  LiNbO3 co=6.5 ° 

4. Thermal expansion 

4.1. Macroscopic expansion 
Expansion coefficients calculated f rom the lattice 

parameters  are given in Table 3. It can be seen that  
they are much  greater in phases where changes of octa- 
hedron tilt are possible (room temperature NaNbO3, 
LiNbO3) than  for the others. 

4.2. Changes of  tilt 
(a) NaNbO3 

The tilt about  [100], ~, is directly found f rom meas- 
ured e, using (9). Fig. 4 shows e and ~0. The change in 
e f rom 39' at room temperature to 22' at 360°C cor- 
responds to a change of ~ f rom 8.6 ° to 6.5 °. 

The tilt about  [010], co, is not  directly deducible f rom 
lattice parameters  alone. When  lr is known it can be 
calculated by using (12); at room temperature,  it is 
thus found to be 8.5 ° . Da ta  about  edge lengths are 

Substance 
NaNbO3 

KNbO3 

LiNbO3 

Table 3. Linear expansion coefficients 
Linear expansion coefficients 

(in units of 10-6 deg-a) 

Temperature Macroscopic 
range mean lm L lu 
20-640 °C 16 - 9  - 1 6  - 5  
20-360 13 f (i) 4 - 1  7 

/ (ii) - 5  -16  0 
360-640 20 - -  - -  - -  
640-800 12 12 - -  - -  

25-425 4 3 - 10 10 
25-205 5 5 --1 8 

220-410 6 6 3 14 
425-510 11 11 - -  - -  

0) 0~ 0i~ 
20-1100 13 2 - 2  - 3  
20-200 9 8 3 - 2  

200-400 12 9 4 0 
400-600 12 8 3 - 2  
600-800 13 2 - 4  0 
800-1000 15 - 9  - 1 2  - 8  

1000-1100 22 -13  - 1 6  -13  

Rounding-off errors are __+ 1. 

Assumptions about 
tilts 

None 
(i) Aco2 = 0 
(ii) AO)2 = A~ 2 

None 

None 
None 
None 
None 

(i) Av=O 
(ii) v/(1200- t)=const. 
(iii) t < 600, v/(600- t) = const. 

t > 600, v = 0. 
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not available at other temperatures. As a working hy- 
pothesis we may assume that, since co is initially nearly 
equal to ~o, its thermal changes will be of the same 
order of magnitude.* In order to show how far uncer- 
tainty about co affects our other conclusions, we con- 
sider two models, one in which o) remains constant 
and one in which it changes at the same rate as ~0. 
Actual changes probably fall between the two extremes, 
as the later discussion will show. 

(b) LiNbO3 
From equations (32) and (31), the tilt is known in 

terms of atomic position parameters which have been 
measured by Abrahams, Levinstein & Reddy (1966). 
Unfortunately the values obtained from powder dif- 
fraction work are subject to large standard deviations; 
there is nevertheless a trend towards increase in u with 
increasing temperature, but changes in v are indeter- 
minate, because the standard deviation is of the same 
order of magnitude as v. We draw a smoothed curve 
through the experimental values of u, and consider 
three possible models for v, (i) that it is independent 
of temperature, (ii) that it drops linearly from its known 
room-temperature value to zero at 1200°C, (iii) that it 
drops linearly to zero at 600°C. The variation of co 
with temperature with these three assumptions is shown 
in Fig. 5. 

One point to notice is the increase in tilt angle with 
increasing temperature for LiNbO3 as compared with 
its decrease for NaNbO3. In both structures, however, 
the changes of tilt have the same physical effect - they 
increase the volume available between the octahedra 
for the second cation A. The difference arises from the 
fact that the LiNbO3 structure represents a deviation 
from one whose framework has a close-packed array 
of oxygen atoms, and increased deviation must open 
it out, while the NaNbO3 structure is a deviation from 
an ideal framework which is fully opened out, so that 
increased deviation must reduce its volume. 

This implies that the effect of increasing temperature 
does not always result in an approach to the nearest 
structure of higher synimetry; each case must be ex- 
amined on its merits. Here the over-riding requirement 
is that of increasing volume, whether for the A cation 
in particular or for the formula-unit as a whole. Pos- 
sible reasons will be discussed in a later paper. 

4.3. Changes of mean edge length of octahedron 
This only differs from the macroscopic thermal ex- 

pansion for structures in which there are changes of 
tilt. 

* The following rough argument  suggests a reason for expect- 
ing that  Ao92=½A(02. I f  we defined our tilts with respect to 
the tetrad axes of  ideal perovskite,  (0 would be replaced by 
two componeuts ,  q~l and (02, such that  (,02 ~_~ ~12 -at- (022. The strain 
energy of  a small twist is propor t ional  to the square of  the 
angle. Since w, ~01, (02 refer to twists which are topologically 
similar, we may expect changes in then to involve equal chan- 
ges of  energy, and therefore A(.o 2 ~ z[(012 ___ ,d(022. 

For NaNbO3 from (14), 

1 dlm 1 da 1 dq 2 de 1 do) 2 (39) 
l dt - a dt + 3  c 1 7 + 3  -dT+-3 --d--t- 

dco2 
For the two models put forward in § 4.2, ~ is 0 

2de 
or dt- respectively. 

For £iNbO3, from (36) and (32), 

1 dim 1 da 1 dt 1 2 dw 
_ _  ~ ~ . 

l dt a dt + 6 dt 3V3 dt (40) 

or, since from (29) 

(1 c 1 
~ 7 - 2  c ~ a ~ ' (41) 

1 dlm 1 ( 2  da 1 dc) 2 do) (42) 
l dt - 3 - d ) - + c ~  - 31/3 di-" 

The first term in (42) is of course the mean linear macro- 
scopic coefficient. Increasing tilt thus implies that the 
mean edge-length expansion is less than the mean 
macroscopic expansion. The calculated value of dlm/dt 
thus depends on our assumptions about dv/dt; we 
continue to use the three models of § 4.2. 

1 dim 
Values of--/ dt- calculated from these equations 

with the use of the lattice parameters of Table 1 are 
recorded in Table 3. 

J L l ! i b i , , ~ , i { . ~  

I0  ° 

. . . .  

8" 
I 

-!7" 

U (b) ~ 6" 

0"07 

0"06 

0"05 

0"04 

I L I I [ , [ I I x I / 

0 200 400 600 800 1000 120 0 °C 

Fig. 5. LiNbO3. (a) Posit ion parameter  u. Points marked  with 
circles and vertical lines show experimental  values of Abra- 
hams, Levinstein & Reddy,  with their s tandard deviations. 
Point  marked x is f rom single-crystal work of  Abrahams,  
Bernstein & Reddy. Smoothed  curve drawn for present 
work. (b) Tilt parameter  w, in degrees, deduced f rom curve 
(a), assuming (i) v constant,  (ii) v decreasing linearly to zero 
at 1200 °C, (iii) v decreasing linearly to zero at 600 *C. 
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Where a cubic phase with known lattice parameters 
exists, and the edge lengths at room temperature have 
been directly measured, it is possible to calculate an 
overall thermal expansion which is independent of any 
assumptions about tilt as a function of temperature. 
This applies to NaNbO3 and KNbO3. While it is not 
strictly applicable to LiNbO3, the uncertainties about 
tilts are relatively much less important when the whole 
temperature range up to 1100°C is considered. 

Looking at Table 3, a striking feature is the low 
value of the octahedron coefficients in phases where 
tilt is possible as compared with the macroscopic ex- 
pansion coefficients of the same phases. The impor- 
tance of distinguishing between the effects of tilt and 
of octahedron expansion is obvious. Since, however, 
changes in the mean octahedron edge length depend 
on independent changes in the relaxed and unrelaxed 
edges, more detailed discussion must be postponed till 
these have been considered. 

It is interesting to note that the empirical electro- 
static-valence relation noted by Megaw (1935) would 
have predicted an expansion coefficient of about 
2 x 10 -6 deg -1. 

4.4. Changes o f  relaxed and unrelaxed edges 
(a) For NaNbO3 from 20°-360°C we have, from 

(12) and (13), 
Air Aa 
. . . . . .  + ½Ae+½AO) 2 (43) 

l a 
and 

Alu Aa 
- - -  +½A~I+¼Ae+¼AO) 2 , (44) 

l a 

where Ao) 2 is 0 or 2Ae for models (i) and (ii) respec- 
tively. These equations have been used to calculate the 
temperature coefficients in Table 3. From (15), the 
change in the relaxation extension is 

Ae=l ( -½Aq-¼Ae+¼Ao)2)  , (45) 

giving - 0 . 0 0 8 / k  for (i) and -0 .015 A for (ii). Since 
the value of e at 20°C is 0.018 A, it is 0.010 A or 
0.003 A at 360°C. 

In spite of the uncertainty about the rate of change 
of co, we can conclude with certainty from the known 
values of At/ and Ae that e decreases with increasing 
temperature, provided that (in accordance with our 
original postulate in § 1.3) co decreases. If  the rate of 
decrease were much greater than in model (ii), e would 
become negative at 360°C, which is very improbable. 
Thus models (i) and (ii) represent extremes between 
which the actual rate of change of co is expected to lie. 

For KNbO3 between 25°C and 205°C, equations 
(18), (19) and (20) give 

Air Aa 
- - - -  0.0002, 

l a 

Alu Aa 
. . . . . .  +½A~ =0.0015 

l a 

and 
Ae= -½lA~l=-0 .0048  A .  

Between 220°C and 410°C, the corresponding values 
are 0.0005, 0.0027, -0 .0062 A. Temperature coeffi- 
cients for lr and lu are listed in Table 3. 

In both phases of KNbO3, e is directly associated 
with the axial ratio 1 + r / [e l  equations (20) and (28)]. 
Though r/ decreases with increasing temperature, in 
neither phase has it dropped to Zero before the tran- 
sition; the relative change before the transition is 20% 
in the orthorhombic phase, 26% in the tetragonal. The 
final equalization of edges occurs at the tetragonal- 
cubic transition, where it is associated with a volume 
contraction. 

The symmetry-clamping effect s in orthorhombic 
KNbO3 is proportional to e [el equation (22)]. From 
Table 1, e is small - much smaller than in NaNbO3 - 
and changes in it are very small, close to the limit of 
experimental error. 

In LiNbO3 all edges are relaxed; there is therefore 
no internal standard of comparison from which to find 
e. The change in the symmetry-clamping effect is, 
from (37) and (41), 

1 ds 2 (1 de 1 da)  2 do) (46) 
l dt = 3 - c  dt a -& +-3V--J -2lt " 

This is evaluated in Table 4 for the three models of 
§ 4.2. We expect s to have a different temperature de- 
pendence from lm but the three models vary too much 
between themselves to allow conclusions to be drawn 
as to its absolute value. However, all agree in suggest- 
ing that its temperature coefficient either stays con- 
stant or becomes more positive with increasing tem- 
perature. Now from (42) and (46), 

1 dlm 1 ds 1 dc 
7- d--t- + --i- d---i- = c d-t- ' (47) 

1 dc 
and Table 4 shows that--c --& decreases with increas- 

1 dlm 
ing temperature above 500 °C. Hence 7 -d r -mus t  de- 

crease as much or more with increasing temperature. 
The expansion of lm in LiNbO3 is therefore certainly 

anomalous. All three models suggest negative values, 
though it remains uncertain whether the abnormality 
is present at room temperature or only sets in above 
about 600°C. 

The theory predicted that in any structure there 
would be an anomalous decrease in the length of re- 
laxed edges with increasing temperature as a conse- 
quence of decreasing Nb displacement. (This, of course, 
only applies within a phase, as we cannot predict the 
sense of Nb displacement at a transition.) If, however, 
in a particular temperature range the Nb displacement 
changes little, the expansion coefficient of the relaxed 
edges will be the same as that of the unrelaxed. In 

A C 2 4 A  - 2 
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KNbO3 and NaNbO3, where there are unrelaxed edges 
for comparison, decrease in e is thus the obvious indi- 
cator of a decrease in Nb displacement. In LiNbO3, 
where there are no unrelaxed edges, the negative values 
of the lm expansion coefficient serve the same purpose. 

We showed above that, for any of the three models 
of LiNbO3, the experimental curve of c versus tem- 
perature followed roughly the same course as lm versus 
temperature, which should also give Nb displacement 
versus temperature. The very fiat shape of the c curve 
is thus an indication that Nb displacements are present 
but are decreasing with increasing temperature. The 
same fiat curve is seen in NaNbO3 below 360°C and 
in orthorhombic KNbO3; in tetragonal KNbO3 there 
is a negative slope. Similar fiat curves in less fully- 
known structures therefore give a strong suggestion 
that they too contain Nb displacements decreasing 
with increase of temperature. 

5. Experimental evidence and conclusions 
concerning Nb displacement 

5.1. Sodium niobate, phase P 

There is direct experimental evidence concerning the 
Nb displacements at different temperatures. Both the 
large [100] component and the small [001] component 
have been found from visually estimated intensities of 
high-angle X-ray reflexions, by the method described 
by Megaw & Wells (1958). The photographs used were 
taken by Dr K.Lukaszewicz, to whom the author 
wishes to express her gratitude. 

Both components decrease with increasing tempera- 
ture (the smaller component being almost negligible). 
The resultant displacement is plotted against tempera- 
ture in Fig. 6. It can be seen that between 0 ° and 360 °C 
it drops nearly linearly to about half its initial value. 
(Points above 360°C refer to phase R, which will be 
discussed later in § 6.3.) 

We now plot the Nb displacement/z against values 
of e calculated from (45) using the lattice parameters 
appropriate to the temperature, with o) as in models 
(i) and (ii) (Fig. 7). In each case the points lie nearly 
on a straight line, on either side of the straight line 
through the origin to the point at 20°C, whose slope 
is 0.018/0.147= 1/8.2. This line corresponds to a model 
with 

AO~ 2 = 0"3A(0 2 • (48) 

From the evidence of this graph we make the simple 
empirical assumption that the Nb displacement is di- 
rectly proportional to the relaxation extension: 

/z = 8.2e. (49) 

We proceed to test it for other materials. 

5.2. Potassium niobate 

Here the Nb displacement is only known at room 
temperature (Katz & Megaw, 1967). We can however 
predict it at all temperatures if we assume that (49) 
holds good, not only within the orthorhombic and 
tetragonal phases individually but also for any dis- 
continuous changes at the phase transitions. With Ae 
given by +-}lAq, Aft is + 4-1 x 2-8At/; using values of 
r/ from Table 1, the values of A/z in the two phases 
and at the two transitions are -0-04,  -0-05,  +0.04, 
- 0 . 1 4 / k ,  totalling 0.19 .~l. Hence we predict a room 
temperature Nb displacement of 0.19 A. The experi- 
mental value is 0.20 A. The good agreement is a con- 
firmation of the hypothesis expressed in equation (49). 

The graph of predicted Nb displacement against 
temperature is plotted in Fig. 8. We note the discon- 
tinuities at the two transitions, and in particular the 
increased displacement at the orthorhombic-tetragonal 
transition. 
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Fig. 6. NaNbO3. Observed variation of Nb displacement /z 
with temperature (experimental values). [] Value from 
structure determination. (3 Values from visually estimated 
intensities, phase P. ~ Values from visually estimated 
intensities, phase R (A. Sakowski-Cowley, private com- 
munication). 

Table 4. Temperature variations o f  parameters in LiNbO3 

1 da 1 dc ds 
a dt -c- dt- dt 

^ 

°C (i) (ii) (iii) 
0-200 12 3 - 5  0 4 

200-400 15 4 - 5  0 5 
400-600 18 3 - 6  - 1 4 
600-800 19 0 - 1 5 0 
800-1000 26 - 6  3 6 2 

1000-1100 42 - 9  4 9 4 

1 dim 
l dt 

(i) (ii) (iii) 
8 3 - 2  
9 4 0 
8 3 - 2  
1 - 5  0 

- 7  -12  - 8  
-13 -17 -13 
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Fig.7. NaNbO3. Variation of Nb displacement/t with edge- 
length difference e. (i) Model with Ac02 =0, (ii) Model with 
Ao~2 ----- A(o 2 . 
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Fig. 8. KNbO3. Predicted variation of Nb displacement/z with 
temperature. 
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Fig.9. LiNbO3. Predicted and observed variation of Nb 
displacement/~ with temperature. Points marked with circles 
and vertical lines show experimental values of Abrahams, 
Levinstein & Reddy, with their standard deviations. Point 
marked x is from single-crystal work of Abrahams, Bern- 
stein & Reddy. Lines (ii), (iii), (iv), (v), are calculated for 
different models described in the text; of these, (iv) and (v) 
are derived directly from lattice parameters. [(i) nearly 
coincides with (ii).] 

5.3. Lithium niobate 
Here the Nb displacement is known from the z par- 

ameter of the oxygen atom as measured by Abrahams, 
Levinstein & Reddy (1966); writing z = ~ -  w,/t  = coc. 
These results are plotted in Fig.9. We shall see how 
far they can be predicted from our hypothesis. Here, 
however, we cannot predict the room-temperature 
value, because there are no measurements of lattice 
parameters when the displacement is zero; we have to 
take the room-temperature value as the datum line 
from which to measure changes. 

Since in this structure there are no relaxed edges, we 
cannot make a reliable direct estimate of the relaxation 
extension e'. Its temperature derivative is more infor- 
mative. We have 

1 de' 1 dlr 1 dlu 1 dim 1 dlu . . . . .  (50) 
- { - d i -  y at Y dt Y dt t d t '  

1 dln 
and since -7 ~ is a normal expansion coefficient, we 

expect it to be positive and to increase with tempera- 
ture. Now de'/dt < O, hence dlm/dt < dlu/dt; therefore 
the maximum observed value of dlm/dt should give a 
lower estimate for dlu/dt. For all three models we find 

(see Table 4) that  - - j  remains nearly constant from 

room temperature to about 600 °C, with values about 
8 x 10 -6, 4 x 10 -6, and - 1 x 10 .6 deg -I respectively, 
and decreases thereafter. Hence, taking differences 
from room temperature values, we can write 

Ae' Alm 1 ( ~ t  ) At.  (51) 
1 l l o 

1 d/~ 
In taking --d/-as the 'normal '  expansion coeffi- 

cient, we are referring to a hypothetical edge that is 
completely unrelaxed. The actual edges are triply 
relaxed, because this is a three-corner displacement. 
In the previous materials, we were either dealing with 
the difference between a singly relaxed edge and an 
unrelaxed one (tetragonal KNbO3) or between a doubly 
relaxed edge and a singly relaxed ( 'partly unrelaxed') 
edge (orthorhombic KNbO3 and NaNbO3). Empiri- 
cally, we may write 

e '=(n l -nz )e  , (52) 

where n is the number of dimensions in which relaxa- 
tion affecting an edge has occurred; here e ' =  3e. Then 
from (49), 

8.2 Ae' (53) 
A/z= ~ A e ' = 7 " 6  l ' 

which, with (51), enables us to calculate A/z for models 
(i), (ii) and (iii). 

This method of prediction of the Nb displacement 
is unsatisfactory because, in addition to the uncertain- 
ties of its assumptions, it requires a knowledge of the 

A C 24A 2* 
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atomic position parameter u which is at least as hard 
to determine as the Nb displacement itself. By making 
a simple empirical assumption, however, we can use 
a similar argument to predict A/a from lattice param- 
eters only. Equation (47) allows this to be done if we 
know, or can assume, ds/dt. Now s, the symmetry- 
clamping parameter, depends on external forces, whose 
temperature variation is independent of d/a/dt, and for 
KNbO3 we saw that ds/dt was much less than d/a/dt. 
If, for LiNbO3, we make the order-of-magnitude as- 
sumption that ds/dt--0, then from (47), 

1 dim 1 dc 
l dt c d r '  

(54) 

and using (51) and (53), 

6  c-l-c (55) 

(Some discussion of possible reasons for expecting 
ds/dt to be small will be given in a later paper.) 

It can be seen from Table 4 that the maximum value 
o f l  dc c ~ occurs at about 200--400°C, and is 4x  10 .6 

deg -x. We adopt this in equation (55) for model (iv). /dtu It is the same as the value of - ) t -  used in model(ii), 

and as before it represents a lower estimate. 
1 dlu . 

An alternative way of estimating l dt is by com- 

parison with the cubic phases of NaNbO3 and KNbO3, 
in both of which it has the same value, 11 x 10 .6 deg -1. 

1 ( ~ c )  
This, replacing-c- --d-/- max in equation (55), gives 

model (v). 
Values of the Nb displacement have been calculated 

for all five models, and are plotted in Fig.9 (except 
that (i), which is very like (ii), has been omitted for 
clarity). Three results emerge. 

(a) All models predict the order of magnitude of/a 
and the general course of its temperature variation 
correctly. 

(b) The exact behaviour of the atomic position par- 
ameter v makes rather little difference. Hence our pre- 
dictions using only macroscopic parameters (full lines 
on the graph) are as good, to the present accuracy, 
as those relying on measurements of u and v. In par- 
ticular, the qualitative conclusion of § 4.4 that the flat 
shape of the c-versus-temperature curve was associated 
with decreasing Nb displacement in the c direction has 
been shown to be justified. 

(c) The course of the ~a-versus-temperature curve is 

fairly sensitive to the value assumed for 1 dlu 7 --dt-' and 
can therefore only be predicted within rather broad 
limits. The difficulty is in finding a value based on ex- 
perimental evidence for the 'normal expansion', i.e. 

the octahedron edge-length expansion which LiNbO3 
would possess if Nb remained undisplaced. Indeed, 
accepting the experimental values of/a instead of trying 
to predict them, we could use this graph to find the 
normal expansion coefficient, and deduce that it lies 
somewhere in the range 4 to 12 x 10 .6 deg -1. 

The general picture of thermal changes in LiNbO3 
is thus as follows. As the Nb displacement decreases, 
the average edge-length decreases with it. All edges 
decrease equally (the symmetry-clamping effect main- 
taining existing differences). This would be seen as a 
uniform macroscopic contraction were it not for the 
change of tilt, which, however, only produces changes 
in the plane perpendicular to the triad axis; thus de- 
creases in the c parameter accompany decreases in Nb 
displacement, while increases in a indicate a change of 
tilt, in a direction to increase the volume available to 
Li. Changes in c parameter and changes in tilt do not 
necessarily proceed at the same rate, but both become 
more rapid as the transition point is approached. 

We may use equation (53) to find the unrelaxed edge 
length at room temperature; it gives e '=0.095 A, 
lu=2.715 ~.  This of course is a hypothetical length 
not actually found in the structure. Completely un- 
relaxed edge lengths in KNbO3 and NaNbO3, for com- 
parison, are calculated to be 2 .832-0 .022=2.810A 
and 2.796-0.018=2.778.~ respectively. The hypo- 
thetical edge lengths of the three compound thus vary 
in the same direction as the ionic radii of the A cations. 

5-4. Conclusions 
All the evidence is consistent with the hypothesis 

that off-centre Nb displacements/a and relaxation ex- 
tensions e' are proportional, with the same constant 
of proportionality for all the examples considered, both 
for continuous and discontinuous changes. The rela- 
tion is 

8.2 
/a .............. e ' ,  (56) 

nl - -  n 2  

where nbn2 are the numbers of dimensions in which 
relaxation affecting the edges has occurred. 

This simple law of proportionality probably only 
represents a first-order approximation to a relation of 
more complicated form. For NaNbO3 and KNbO3, 
however, it seems to fit the facts very well; for LiNbO3, 
where many additional factors are involved, it is at 
least correct as regards the order of magnitude of the 
quantities concerned. 

6. Less fully-known structures 

6.1. Sodium niobate, phase (2 
Phase Q is the ferroelectric phase. Geometrical rela- 

tions are the same as for phase P, except that 4 is 
replaced by 2 in equations (2) and (7) for b0. 

Pseudocubic cell edges are known accurately as a 
function of temperature, but e is only known approx- 
imately to have a value close to that in phase P. 
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Even with this limited information, we can show that 
e is positive. From (15), 

e 
- ½ , 1 _ ¼ e + ¼ c o ~ .  

l 

Since - ½r/= 0.0054, and - ¼e would be - 0.0028 if it 
were the same as in phase P, it is clear that no reason- 
able difference in e could make (--}r/-¼e) negative, 
and whatever the magnitude of co2, its sign is positive; 
hence e is positive. It is likely (by analogy with phase P) 
that co lies between 0 and rp; then e lies between 0.007 A 
and 0.022/~. Since we have no reason to suppose that 
co is very different in phase Q from what it was in 
phase P, e is probably nearer the upper of these limits. 

6.2. Solid solution Na0.975K0.025NbO3 (phase II) 
More information is available about the potassium- 

containing solid solution, 'phase II', studied by Wells 
& Megaw, isostructural with phase Q. The accuracy 
of the refinement is not yet good enough to show 
significant differences in/x and e from those of phase P, 
but the same general principles hold good for phase II 
(cf. Table 2). The tilt co is certainly less than in phase P; 
its value is 6 .6+2 °. If the octahedron had the same 
shape as in phase P, its tilt would be 7.4 °, which lies 
well within the limits of error quoted (which are esti- 
mated limits, not standard deviations). 

It is expected that the tilts should be smaller in 
phase II than in phase P, because this provides a larger 
cavity to accommodate the proportion of larger K ions. 

6.3. Sodium niobate, NaNbO3, phase R 
This is orthorhombic, but the diad symmetry direc- 

tions of the structure now all coincide with the tetrad 
axes of the octahedron. The displacement of Nb is one- 
corner, directed along the c axis. Its magnitude (A. 
Sakowski-Cowley, private communication) is slightly 
greater in phase R than in phase P just below the tran- 
sition, but decreases very rapidly with increasing tem- 
perature (Fig. 6). 

The relaxed edges are those with a component along 
c. We expect them to be longer than edges in the (001) 
plane, and to contract with increasing temperature as 
the Nb displacement decreases. 

To make predictions about lattice parameters we 
should have to know the tilts. But, assuming they are 
not too large or too unequal about the three axes, we 
expect c to be the largest of the lattice parameters and 
to have the smallest thermal expansion. Preliminary 
results (A. Sakowski-Cowley, private communication) 
indicate that all three tilt angles are roughly equal 
(about 5 °). The flat shape of the graph of e versus 
temperature, and the fact that it lies above the a and b 

c 
graphs, agrees with prediction. (In Table 1, e = - -  - 1, 

a 

b 
r / = - - - 1 . )  

a 

6-4. Other high temperature forms of  NaNbO3 
Above phase R we have a complex succession of 

phases. From the evidence of certain difference reflex- 
ions persisting to about 600 °C, it is known that octa- 
hedral tilts still remain, and the intensities of these 
particular reflexions can be associated with the tilt ~0. 
It is clear from Table 3 that most of the macroscopic 
expansion is due to the gradual disappearance of tilts. 
Indeed, the change of mean octahedral edge-length is 
a rather large contraction. Without further information 
we cannot say how much of the contraction occurs 
continuously within phases, and how much discon- 
tinuously at phase transitions. Similarly, changes in 
Nb displacement may be discontinuous at transitions, 
and they need not always be decreases, even though 
there must be a net decrease over the whole range. 

The temperature variation of the lattice parameters, 
in the light of our previous discussions, suggests that 
the Nb displacement has dropped to zero by about 
(470_+ 30)°C, and that thereafter, in phase S, there is 
a 'normal' octahedron expansion coefficient super- 
imposed on the continuing change of tilt. We can pre- 
dict the macroscopic expansion coefficient if we assume 
(i) (admittedly rather roughly) that the rate of change 
of tilt is constant from 20 ° to 640°C, being given by 
the difference of the macroscopic coefficient and the 
lm coefficient, (ii) that the 'normal' coefficient is the 
same as in the cubic phase. From Table 3, the predicted 
value is then (in units of 10 -6 deg -1) 1 6 - ( - 9 ) +  12=37, 
as compared with the experimental values (rather 
roughly determined) of about 26 to 41. 

Above about 500°C the increased rate of expansion 
almost certainly implies increased rate of change of 
tilt, and at about 530 °C there is certainly a discontinu- 
ous change in the system of tilts. Possibly at this tran- 
sition there may be a renewed off-centre displacement 
of Nb. Unexpected though this may appear, there is 
no theoretical reason against it, and its occurrence 
would make it easier to account for the rather complex 
variation of lattice parameters from 530°C to 640°C. 
If the difference of the largest axial ratio from unity 
were entirely due to e and hence to/~, the value of/~ 
would be about 0.07 A up to about 600 °C, after which 
it would drop very rapidly. If displacements occur, 
they may be parallel, as no reflexions with intensities 
suggesting antiparallel displacements have been noted. 
Direct measurements of dielectric constants or spon- 
taneous polarization to test for ferroelectricity have 
not been made because the material becomes conduct- 
ing. Thus there is no certain evidence, either structural 
or electrical, and the suggestion remains speculative. 

7. Applicability to other octahedral structures 

The advantage of niobates for testing the theoretical 
approach is that the intrinsic effect produces an off- 
centre displacement at room temperature which is 
measurable but not too large to allow linear approx- 
imations and averaging procedures to be valid. A 
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survey of other cations with off-centre octahedral en- 
vironments has been given by Orgel (1958), and in 
principle the same approach should be applicable to 
them. There may, however, be difficulties where the 
effect is too small or too large. 

Titanates are representative of the too-small effect. 
It seems clear now that the intrinsic effect is below the 
critical value at room temperature, and that forces due 
to the other cation (steric in BaTiO3, polarizing power 
in PbTiO3) are needed to produce off-centring. It is 
harder to allow correctly for such external effects. 

Vanadates are representative of the too-large effect. 
Here the displacements are so large, and the consequent 
polarization changes so important, that some of our 
working approximations become dubious, and the 
lower local symmetries make the geometry harder to 
handle. Moreover, the large displacements represent 
such large energy differences that they are likely to be 
much less sensitive to temperature changes. 

Nevertheless one would expect both titanates and 
vanadates and other octahedra with off-centre cations 
to show something of the same effects as the niobates, 
though the regularities may be harder to recognize 
because of the disturbing factors mentioned. 

8. Summary 

(1) To a first approximation, NbO6 octahedra behave 
as homogeneous isotropic units, and the macroscopic 
expansion is the sum of parts due to the change of 
mean edge length of the octahedron and the change 
of octahedron tilt. 

(2) When changes of tilt are allowed by symmetry, 
their contribution to the macroscopic expansion is con- 
siderably greater than that of changes of octahedron 
size. 

(3) The mean edge-length coefficient of the octa- 
hedron is always very small, and may even be negative, 
as long as off-centre Nb displacements are present; but 
becomes much larger when Nb becomes central. This 
is in accordance with theory. 

(4) The difference e between relaxed and unrelaxed 
edge lengths of the octahedron at room temperature 
is, for all the materials examined, whatever their geom- 
etry, of the sign predicted by theory from the character 
of the Nb displacement, and of about the same mag- 
nitude. 

(5) As predicted by theory, the value of e varies with 
temperature in the same way as that of the Nb displace- 
ment, p. To a first approximation the two are propor- 
tional, with/~ = 8.2e for one-corner and two-corner dis- 
placement, and p=8.2e' /3 for three-corner displace- 
ment (e' not being found directly from the structure, 
as e is in the other cases). 

(6) The constant of proportionality in this relation 
is the same for different materials, different phases of 
the same material, and continuous and discontinuous 
changes. 

(7) The constant of proportionality found from ex- 
perimental evidence for NaNbO3 (phase P) predicts 
correctly the room temperature displacement of Nb in 
KNbO3, using only the measured changes of axial ratio 
up to 425 °C; it also gives an order-of-magnitude pre- 
diction of the temperature variation of the displace- 
ment of Nb in LiNbO3, using only measured lattice 
parameters up to 1100°C. 

(8) Less fully known niobates appear to satisfy the 
same relations, so far as the evidence goes. 

(9) Other octahedral framework structures with off- 
centre cations should show comparable effects, but the 
regularities may be harder to detect because of other 
complicating factors. 
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